Off-the-Record Communication, or, Why Not to Use PGP

Nikita Borisov
Ian Goldberg
Eric Brewer

Our Scenario

- Communication privacy is a complicated problem
- Simplifying assumptions
 - Alice and Bob both know how to use PGP
 - They both know each other's public keys
 - They don't want to hide the fact that they talked, just what they talked about

Solved Problem

- Alice uses her public key to sign a message
 - Bob should know who he's talking to
- She then uses Bob's public key to encrypt it
 - No one other than Bob can read the message
- Bob decrypts it and verifies the signature
- Pretty Good, no?

Threat Model

Plot Twist

- Bob's computer is stolen by "bad guys"
 - Criminals, competitors
 - Subpoenaed by the FBI
- Or just broken into
 - Virus, trojan, spyware, black bag job
- All his key material is recovered
 - Oh no!

Bad guys can...

- Decrypt past messages
- Learn their content
- Learn that Alice sent them
 - And have a mathematical proof they can show to anyone else
- How private is that?

What went wrong?

- Bob's computer got stolen?
- How many of you have never...
 - Left your laptop unattended?
 - Not installed the latest patches?
 - Run software with a remotely exploitable bug?
- What about your parents?

What Really Went Wrong

- The software created lots of incriminating records
 - Key material that decrypts data sent over the public Internet
 - Signatures with proofs of who said what
- Alice better watch what she says
 - Her privacy depends on Bob's actions

Casual Conversations

- Alice and Bob talk in a room
- No one else can hear
 - Unless being recorded
- No one else knows what they say
 - Unless Alice or Bob tell them
- No one can prove what was said
 - Not even Alice or Bob

9

We Like Casual Conversations

- Legal support for having them
 - Illegal to record conversations without notification
- We can have them over the phone
 - Illegal to tap phone lines
- But what about over the Internet?

Crypto Tools

- We have the tools to do this
 - We've just been using the wrong ones
 - (when we've been using crypto at all)
- We want perfect forward secrecy
- We want repudiation

Perfect Forward Secrecy

- Use a short-lived encryption key
- Encrypt your data with it
- Discard it after use
 - Securely erase from memory
- Use long-term keys to help distribute & authenticate the short-lived key

Repudiable Authentication

- Do not want digital signatures
 - Leave non-repudiation for contracts, not conversations
- Do want authentication
 - Can't maintain privacy if attackers can impersonate friends
- Use Message Authentication Codes (MACs)

MAC Operation

Alice

No Third-Party Proofs

- Shared key authentication
 - Alice and Bob have same MK
 - MK required to compute MAC
- Bob cannot prove that Alice generated the MAC
 - He could have done it, too
 - Anyone who can verify can also forge

Off-the-Record Protocol

- Rough sketch of protocol
 - Details in the paper
- Assume Alice and Bob know each other's public keys
 - These keys are long-lived, but we will only use them as a building block

Step 1: Diffie-Hellman

- Alice and Bob pick random x, y resp.
- A->B: g^x, Sign_{Alice}(g^x)
- B->A: g^y, Sign_{Bob}(g^y)
- SS=g^{xy} a shared secret
- Signatures authenticate the shared secret, not content

Step 2: Message Transmission

- Compute EK=Hash(SS), MK=Hash(EK)
- A->B: Enc_{EK}(M), MAC(Enc_{EK}(M),MK)
- Enc is symmetric encryption (AES)
- Bob verifies MAC using MK, decrypts M using EK
- Confidentiality and authenticity is assured

Step 3: Re-key

- Alice and Bob pick x',y'
- A->B: g^{x'}, MAC(g^{x'}, MK)
- B->A: g^{y'}, MAC(g^{y'}, MK)
- SS' = $H(g^{x'y'})$
- EK' = H(SS'), MK'=H(EK')
- Alice and Bob securely erase SS, x, y, and EK
 - Perfect forward secrecy

IM implementation

- Instant messaging suited for casual conversations
 - Current security options not satisfactory
- Implemented OTR plugin for GAIM
 - Multi-platform IM client for Linux, Windows
- Prototype status
 - Help us test it!

What about Email?

- OTR protocol is interactive
 - Requires initial exchange to set up keys
- Can be used for long-term conversations
 - Each round is a message
 - Forward secrecy window days, not minutes
- Can use ring signatures for first interaction

Conclusion

- Current software provides the wrong privacy properties for casual conversations
- We want
 - Perfect forward secrecy
 - Repudiability
- Use our OTR protocol
 - http://cypherpunks.ca/otr/